SUBSCRIBER:


past masters commons

Annotation Guide:

cover
The Collected Works of Petr Alekseevich Kropotkin.
cover
Fields, Factories, and Workshops
Endmatter
Endnotes

Endnotes

1 See Appendix A.

2 See Appendix B.

3 For the last few years, since the Japanese war, the figures were uncertain. It appeared, however, in 1910, that there were in the empire, including the industries paying an excise duty, 19,983 establishments, employing 2,253,790 persons and showing a yearly production of 4,565,400,000 roubles (£494,600,000). Out of them, the industrial establishments under the factory inspectors in European Russia proper, Poland, and the four northern provinces of Caucasia numbered 15,720, employing 1,951,955 workpeople, out of whom 1,227,360 were men, 521,236 women, and 203,359 children.

4 The yearly imports of raw cotton from Central Asia and Transcaucasia represent, as a rule, about one tenth part of the total imports of raw cotton (£l,086,000, as against £11,923,000 In 1910). They are quite a recent growth, the first plantations of the American cotton tree having been introduced in Turkestan by the Russians, as well as the first sorting and pressing establishments. The relative cheapness of the plain cottons in Russia, and the good qualities of the printed cottons, attracted the attention of the British Commissioner at the Nijni Novgorod Exhibition in 1897, and are spoken of at some length in his report.

5 The yearly production of the 1,037 woollen mills of Russia and Poland (149,850 workpeople) was valued at about £25,000,000 in 1910, as against £12,000,000 in 1894.

6 Report of Vice-Consul Green, The Economist, 9th June, 1894: “Reapers of a special type, sold at £15 to £17, are durable and go through more work than either the English or the American reapers.” In the year 1893, 20,000 reaping machines, 50,000 ploughs, and so on, were sold in that district only, representing a value of £822,000. Were it not for the simply prohibitive duties imposed upon foreign pig-iron (two and a half times its price in the London market), this industry would have taken a still greater development. But in order to protect the home iron industry — which consequently continued to cling to obsolete forms in the Urals — a duty of 61s. a ton of imported pig-iron was levied. The consequences of this policy for Russian agriculture, railways and State’s budget have been discussed in full in a work by A. A. Radzig, The Iron Industry of the World. St. Petersburg, 1896 (Russian).

7 Out of the 1,500 steamers which ply on Russian rivers one quarter are heated with naphtha, and one-half with wood; wood is also the chief fuel of the railways and ironworks in the Urals.

8 The output was, in 1910, 24,146,000 tons in European Russia, and 1,065,000 tons in Siberia.

9 See Appendix C.

10 Here are the figures obtained by the official census of 1908. In all the cotton industry, only 220,563 men (including boys), 262,245 women, and 90,061 girls less than eighteen years old were employed. They produced 6,417,798,000 yards of unbleached gray, and 611,824,000 yards of bleached white and coloured cottons that is, 160 yards per head of population — and 1,507,381,000 lb. of yarn, valued £96,000,000. We have thus 12,271 yards of cotton, and 2,631 lb. of yarn per person of workpeople employed. For woollens and worsted there were 112,438 men and boys, 111,492 women, and 34,087 girls under eighteen. The value (incomplete) of the woven goods was about £40,250,000, and that of the yarn about £21,000,000. These figures are most instructive, as they show how much man can produce with the present machinery. Unfortunately, the real productivity in a modern factory is not yet understood by the economists. Thus, we saw lately Russian economists very seriously maintaining that it was necessary to “proletarise” the peasants (about 100,000,000) in order to create a great industry. We see now that if one-fourth, or even one-fifth, part only of the yearly increase of the population took to industry (as it has done in Germany), Russian factories would soon produce such quantities of all sorts of manufactured goods that they would be able to supply with them 400 or 500 million people, in addition to the population of the Russian Empire.

11 Many facts in point have also been collected In a little book, Made in Germany, by E. E. Williams. Unhappily, the facts relative to the recent industrial development of Germany are so often used in a partisan spirit in order to promote protection that their real importance is often misunderstood.

12 Francke, Die neuest Entwickelung der Textil-Industrie in Deutschland.

13 Cf. Schulze Gawernitz, Der Grossbetrieb, etc. — See Appendixes D, E, F.

14 The imports of German woollen stuffs into this country have steadily grown from £607,444 in 1890 to £907,569 in 1894 and £1,822,514 In 1910. The British exports to Germany (of woollen stuffs and yarns have also grown, but not in the same proportion. They were valued at £2,769,392 in l890, £3,017,163 in 1894, and £4,638,000 in 1906–1910 (a five years’ average).

15 During the census of 1902, there were in Austria 1,408,000 industrial establishments, with 1,787,000 horse-power, giving occupation to 4,049,300 workpeople; 1,128,000 workpeople were engaged in manufacturer in Hungary.

16 The net imports of raw cotton reached 1,180,000 cwts. in 1885, and 4,120,000 cwts, in 1908; the number of spindles grew from 880,000 in 1877 to 3,800,000 in 1907. The whole industry has grown up since 1859. In 1910 no less than 358,200 tons of pig-iron and 671,000 tons of steel were produced in Italy. The exports of textiles reached the following values in 1905–1910: Silks, from £17,800,000 to £24,794,000-cottons £4,430,000 to £5,040,000; woollens, from £440,000 to £1.429.000.

17 Times August 27, 1912.

18 The Economist, 12th May, 1894, p. 9: “A few years ago the Orizaba mills used entirely imported raw cotton; but now they use home-grown and home-spun cotton as much as possible.”

19 Annuario Estadistico, 1911. They consumed 34,700 tons of raw cotton, and, produced 13,936,300 pieces of cotton goods, and 554,000 cwts. of yarn.

20 Schulze Gawernitz, The Cotton Trade, etc., p. 123.

21 In 1882 they had 5,633 looms and 95,937 spindles. Thirteen years later these figures were already doubled — there being 10,600 looms and 216,000 spindles. Now, or rather in 1909–1910, we find 60 jute mills, with 31,420 looms, 645,700 spindles, and 204,000 workpeople. The progress realised in the machinery is best seen from these figures. The exports of jute stuffs from India, which were only £1,543,870 in 1884–1885, reached £11,333,000 in 1910–1911. (See Appendix H.)

22 Textile Recorder, 15th Ootober, 1888.

23 39,200,000 Ib. of yarn were imported in 1886 as against 6,435,000 Ib. of home-spun yarn. In 1889 the figures were 66,633,000 Ib. imported and 26,809,000 Ib. home-spun.

24 In 1910 the imports of cotton and woollens were only £2,650,500, while the exports of cotton yarn, cotton shirtings, and silk manufactures reached a value of £8,164,800.

25 The mining industry has grown as follows: — Copper extracted: 2,407 tons in 1875, 49,000 in 1909. Coal: 567,200 tons in 1875; 15,635,000 in 1909. Iron: 3,447 tons in 1875 15,268 in 1887; 65,000 in 1909. (K. Rathgen, Japan’s Volkwirthschaft und Staatshaushaltung, Leipzig, 1891; Consular Reports.)

26 Workers employed in manufacturing industries: 2,054,000 in 1870, 4,712,600 in 1890, and 6,723,900 in 1905 (including salaried officials and clerks). Value of produce: 3,385,861,000 dollars in 1870, 9,372,437,280 dollars in 1890, and 16,866,707,000 in 1905. Yearly production per head of workers: 1,648 dollars in 1870, 1,989 dollars in 1890, and 2,614 dollars in 1905.

27 About the cotton industry in the United States, see Appendix I.

28 It was from 7,255,076 to 9,811,620 tons of pig-iron during the years 1890–94, and 27,303,600 long tons in 1910 ( £85,000,000 worth). The total value of products of the steel works and rolling mills reached in 1909 the immense value of £197,144,500. In the Statesman’s Year-book for the years 1910–1912, the reader may find most striking figures concerning the rapid growth of the iron and steel industry in the States. We have nothing parallel to it in Europe.

29 The largest output of one blast-furnace in Great Britain does not exceed 750 tons in the week, while in America it had reached 2000 tons” (Nature, 19th Nov., 1891, p. 65). In 1909 the Bessemer steel plants had 99 oonverters; total daily capacity of ingots or direct castings, double turn, in 1909, 45,983 tons.

30 J.R. Dodge, Farm and Factory: Aids to Agriculture from other Industries, New York and London, 1884, p. 111. I can but highly recommend this little work to those interested in the question.

31 [See Table 1]

32 [See Table 2]

33 J. Stephen Jeans, The Iron Trade of Great Britain (London, Methuen), 1905, p. 46. The reader will find in this interesting little work valuable data concerning the growth and improvement of the iron industry in different countries.

34 I leave these lines on purpose as they were written for the first edition of this book.

35 Twenty-three per cent. of the total area of England, 40 per cent. in Wales, and 75 per cent. in Scotland are now under wood, coppice, mountain heath, water, etc. The remainder — that is, 32,777,513 acres — which were under culture and permanent pasture in the year 1890 (only 32,094,658 in 1911), may be taken as the “cultivable” area of Great Britain.

36 Average area under wheat in 1853–1860, 4,092,160 acres; average crop, 14,310,779 quarters. Average area under wheat in 1884–1887, 2,509,055 acres; average crop (good years), 9,198 956 quarters. See Professor W. Fream’s Rothamstead Experiments , (London, 1888), page 83. I take in the above Sir John Lawes’ figure of 5.65 bushels per head of population every year. It is very close to the yearly allowance of 5.67 bushels of the French statisticians. The Russian statisticians reckon 5.67 bushels of winter crops (chiefly rye) and 2.5 bushels of spring crops (sarrazin, barley, etc.).

37 There was an increase of 1,800,000 head of horned cattle and a decrease of 4.25 million sheep (6.66 millions, if we compare the year 1886 with 1868), which would correspond to an increase of 1.25 million of units of cattle, because eight sheep are reckoned as equivalent to one head of horned cattle. But five million acres having been reclaimed upon waste land since 1860, the above increase should hardly do for covering that area, so that the 2.25 million acres which were cultivated no longer remained fully uncovered. They were a pure loss to the nation.

38 According to a report read by Mr. Crawford before the Statistical Society in October, 1899, Britain imports every year 4,500,000 tons of hay and other food for its cattle and horses. Under the present system of culture, 6,000,000 acres could produce these food-stuffs. If another 6,000,000 acres were sown with cereals, all the wheat required for the United Kingdom could have been produced at home with the methods of culture now in use.

39 No less than 5,877,000 cwts. of beef and mutton, 1,065,470 sheep and lambs, and 415,565 pieces of cattle were imported in 1895. In 1910 the first of these figures rose to 13,690,000 cwts. Altogether, it is calculated (Statesman’s Year-book, 1912) that, in 1910, 21 lb. of imported beef, 13.5 lb. of imported mutton, and 7 lb. of other sorts of meat, per head of population, were retained for home consumption; in addition to 11 lb. of butter, 262 lb. of wheat, 26 lb. of flour, and 20 lb. of rice and rice-flour, imported.

40 Agricultural population (farmer and labourers) in England and Wales: 2,100,000 in 1861; 1,383,000 in 1884; 1,311,720 in 1891; 1,152,500 (including fishing population) in 1901.

41 Round the small hamlet where I stayed for two summers there were: One farm, 370 acres, four labourers and two boys another, about 300 acres, two men and two boys; another, about 300 acres, two men and two boys; a third 800 acres, five men only and probably as many boys. In truth, the problem of cultivating the land with the least number of men has been solved in this spot by not cultivating at all as much as two-thirds of it. Since these lines were written, in 1890, a movement in favour of intensive market-gardening has begun in this country, and I read in November, 1909, that they were selling at the Covent Garden market asparagus that had been grown in South Devon in November. They begin also to grow early potatoes in Cornwall and Devon. Formerly, nobody thought of utilising this rich soil and warm climate for growing early vegetables.

42 Land Problems and National Welfare, London, 1911.

43 Rural England, two big volumes, London, 1902.

44 See H. Rider Haggard’s Rural Denmark and, its; Lessons , London, 1911, pp. 188–212.

45 The Rothamstead Experiments, 1888, by Professor W. Fream, p. 35 seq. It is well worth noting that Mr. Hall, who was the head of Rothamstead for many years, maintained from his own experience that growing wheat in England is more profitable than rearing live stock. The same opinion was often expressed by the experts whose testimonies are reproduced by Rider Haggard. In many places of his Rural England one finds also a mention of high wheat crops, up to fifty-six bushels per acre, obtained in many places in this country.

46 [see Table 3]

47 Only from each 52 acres, out of 308 acres, hay is obtained. The remainder are grazing grounds.

48 That is, thirty to thirty-three bushels on the average; forty bushels in good farms, and fifty in the best. The area under wheat was 16,700,000 acres in 1910, all chief corn crops covering 33,947,000 acres; the cultivated area is 90,300,000 acres, and the aggregate superficies of France, 130,800,000 acres. About agriculture in France, see Lecouteux, Le ble, sa culture extensive et intensive ,1883; Risler, Physiologie et culture du ble , 1886; Boitet, Herbages et prairies naturelles , 1885; Baudrillart, Les populations agricoles de la Normandie , 1880; Grandeau, La production agricole en France , and L’agriculture et les institutions agricoles du monde au commencement du vingtieme siecle ; P. Compain, Prairies et paturages; A. Clement, Agriculture moderne , 1906; Auge Laribe, L’evolution de la France agricole , 1912; Leonco do Lavergne’s last edition; and so on.

49 The exports from France in 1910 (average year) attained: Wine, 222,804,000 fr.; spirits, 54,000,000 fr.; cheese, butter and sugar, 114,000,000 fr. To this country France sent, same year, £2,163,200 worth of wine, £1,013,200 worth of refined sugar, £2,11G,000 worth of butter, and £400,000 worth of eggs, all of French origin only, in addition to £12,206,700 worth of manufactured silks, woollens, and cottons. The exports from Algeria are not taken in the above figures.

50 Each 1,000 acres of French territory are disposed of as follows: 379 acres are under woods and coppices (176), building, communal grazing grounds, mountains, etc., and 621 acres are considered as “cultivable.” Out of the latter, 130 are under meadows, now Irrigated to a great extent, 257 acres under cereals (124 under wheat, and 26 under wheat mixed with rye), 33 under vineyards, 83 under orchards, green crops, and various industrial cultures, and the remainder is chiefly under permanent pasture or bare fallow. As to cattle, we find in Great Britain in 1910, which was an average year, 7,037,330 head of cattle (including in that number about 1,400,000 calves under one year), which makes twenty-two head per each 100 acres of the cultivable area, and 27,103,000 sheep — that is, eighty-four sheep per each 100 acres of the same area. In France we find, in the same year, 14,297,570 cattle (nineteen head per each 100 acres of cultivable area), and only 17,357,1340 sheep (twenty-one sheep per 100 acres of the same). In other words, the proportion of horned cattle is nearly the same in both countries (twenty-two head and nineteen head per 100 acres), a considerable difference appearing in favour of this country only as to the number of sheep (eighty-four as against twenty-one). The heavy imports of hay, oil cake, oats, etc., into this country must, however, not be forgotten, because, for each head of cattle which lives on imported food, eight sheep can be grazed, or be fed with home-grown fodder. As to horses, both countries stand on nearly the same footing.

51 Out of each 1000 acres of territory, 673 are cultivated, and 327 are left as uncultivable, and part of them are now used for afforestation. Out of the 673 cultivated acres, 273 are given to cereals, out of which 61 are under pure wheat, 114 under meteil (a mixture of two-thirds of wheat and one-third of rye) and pure rye, and 98 under other cereals; 18 to potatoes, 45 to roots and fodder and 281 to various industrial cultures (beet for sugar, oleaginous grains, etc.); 27 are under gardens, kitchen gardens and parks, 177 under woods, and 57 are cultivated periodically. On the other hand, each 65 acres out of 1000 give catch-crops of carrots, mangolds, etc.

52 Annuaire Statistique de la Belgique pour 1910, Bruxelles, 1911. In Mr. Seebohm Rowntree’s admirable work, Land and Labour: Lessons from Belgium, published 1910 (London, Macmillan), the reader will find all concerning Belgian agriculture dealt with in detail on the basis of the author’s personal scrupulous inquiries on the spot, and all available statistical information

53 Land and Labour: Labour from Belgium, pp. 178,179.

54 Taking all horses, cattle and sheep in both countries, and reckoning eight sheep as equivalent to one head of horned cattle, we find that Belgium has twenty-four cattle units and horses upon each 100 acres of territory, as against twenty same units and horses in Great Britain. If we take cattle alone, the disproportion is much greater, as we find thirty-six cattle units on each 100 acres of cultivable area, as against nineteen in Great Britain. The annual value of animal produce in Belgium is estimated by the Annuaire Statistique de la Belgique (1910, p. 302) at £ 66,040,000, including milk (£4,000,000), poultry (£1,600,000), and eggs (£1,400,000).

55 I take these lines from a letter which the Rural Office of the Belgian Ministry of agriculture had been kind enough to write to me on January 28, 1910, in reply to some questions which I had addressed to that Office in order to explain the striking oscillations of the Belgian exports between the years 1870 and 1880. A Belgian friend, having kindly taken new information upon this point, had the same opinion confirmed from another official source.

56 If we take the figures of imports and exports, which I also owe to the Belgian Rural Office, we find that the net imports of wheat, rye, and wheat mixed with rye (méteil) reached 3.01 million lb. in 1907 (3,374 million in 1910), which would give 429 lb. per capita for a population of 7,000,000 inhabitant But if this amount be added to the local production of the same cereals, which reached the same year 2,426 million lb., we arrive at the figure of 776 lb. per head of population. But such a figure is much too high, because the annual per capita consumption of both the winter and, the spring cereals is generally estimated to be 502 lb. There must be, therefore, either an error in the weight of the imports, which is improbable, or the figures of re-exported cereals are not complete. Let me add that in France the average annual consumption per capita of all cereals, including oats, has been in the course of twenty-nine years (1880–1908) 525 lb., which confirms the above-mentioned figure. And in France people eat as much bread as in Belgium.

57 See Appendix K.

58 [See Table 4]

59 I saw thermosiphons used by the market-gardeners at Worthing. They said that they found them quite satisfactory. As to the cost of heating the soil, let me mention the experiments of H. Mehner, described in Gartenflora , fascicules 16 and 17 of the year 1906. He considers the cost quite small, in comparison with the increased value of the crops. With £ 100 per Morgen, spent for the installation, and £ 10 every spring for heating, the author estimates the increase in the value of crops (earlier vegetables) at £ 100 every year. (Report to the German Landwirthschafts Gesellschaft, 1906.)

60 “Portable soil” is not the latest departure in agriculture. The last one is the watering of the soil with special liquids containing special microbes. It is a fact that chemical manures, without organic manure, seldom prove to be sufficient. On the other hand, it was discovered lately that certain microbes in the soil are a necessary condition for the growth of plants. Hence the idea of sowing the beneficent microbes, which rapidly develop in the soil and fertilise it. We certainly shall soon hear more of this new method, which is experimented upon on a large scale in Germany, in order to transform peat-bogs and heavy soils into rich meadows and fields.

61 Ponce, La culture maraîchère, 1869; Gressent, Le potager moderne , 7th edition in 1886; Courtois-Gérard, Manuel pratique de culture maraîchère, 1863, L. G. Gillekens, Cours pratique de culture maraîchère, Bruxelles, 1895; Vilmorin, Le bon jardinier (almanac). The general reader who cares to know about the productivity of the soil will find plenty of examples, well classified, in the most interesting work La Répartition métrique des impôts, by A. Toubeau, 2 vols., 1880. I do not quote many excellent English manuals, but I must remark that the market-gardening culture in this country has also obtained results very highly prized by the Continental gardeners, and that the chief reproach to be addressed to it is its relatively small extension. French market-gardening having been lately introduced into England, several manuals have been published for that purpose. The little work, French Gardening, by Thomas Smith London (Utopia Press), 1909, deserves special mention, as it contains the results of one year’s observation of the work of a French gardener, specially invited to England by Mr. Joseph Fels, and gives (with illustrations a mass of practical indications and numerical data as to the cost and the value of the produce. A subsequent work of the same author The Profitable Culture of Vegetables for Market Gardeners, Small Holders, und Others, London (Longmans, Green), 1911, deals in detail with the ordinary culture of vegetables and the intensive culture of the French gardeners.

62 Manuel pratique de culture maraîchère, by Courtois-Gérard, 4th edit., 1868.

63 Already it is partly removed in France and Belgium, owing to the public laboratories where analyses of seeds and manure are made free. The falsification discovered by these laboratories exceed all that could have been imagined. Manures, containing only one-fifth part of the nutritious elements they were supposed to contain, were found to be quite common; while manures containing injurious matters, and no nutritious parts whatever, were not infrequently supplied by firms of “respectable” repute. With seeds, things stand even worse. Samples of grass seeds which contained 20 per cent. of unjurious grasses, or 20 per cent. of grains of sand, so coloured as to deceive the buyer, or even 10 per cent. of a deadly poisonous grass, passed through the Ghent laboratory.

64 During the winter of 1890 a friend of mine, who lived in a London suburb, used to get his butter from Bavaria per parcel post. It cost him 10s. the eleven pounds in Bavaria, parcel post inclusive (2s. 2d.), 6d. for the money order, and 2.5d. the letter; total, less than 11s. Butter of an inferior quality (out of comparison), with 10 to 15 per cent. of water inclusive, was sold in London at 1s. 6d. the lb. at the same time.

65 The data for the calculation of the cost of production of wheat in this country are those given by the Mark Lane Express; they will be found in a digestible form in an article on wheat-growing in the Quarterly Review for April, 1887, and in W. E Bear’s book, The British Farmer and his Competitors, London (Cassell), 1888. Although they are a little above the average, the crop taken for the calculations is also above the average. A similar inquiry has been made on a large scale by the Russian Provincial Assemblies, and the whole was summed up in an elaborate paper, in the Vyestnik Promyshlennosti, No. 49, 1887. To compare the paper kopecks with pence I took the rouble at .63 of its nominal value: such was its average quotation during the year 1886. I took 475 English Ib. in the quarter of wheat.

66 The rents have declined since 1887, but the prices of wheat also went down. It must not be forgotten that as the best acres only are selected for wheat-growing, the rent for each acre upon which wheat is grown must be taken higher than the average rent per acre in a farm of from 200 to 300 acres.

67 L. de Lavergne pointed out as far back as fifty years ago that the States were at that time the chief importers of guano. Already in 1854 they imported it almost to the same amount as this country, and they had, moreover, sixty-two manufactories of guano which supplied it to the amount of sixteen times the imports. Compare also Ronna’s L’agriculture aux Etats Unis, 1881; Lecouteux, Le blé; and J. R. Dodge’s Annual Report of the American Department of Agriculture for 1885 and 1886. Sohaeffle’s work was also summed up in Schmoller’s Jahrbuch.

68 See also J. R. Dodge’s Farm and Factory, New York, 1884.

69 Some additional information on this subject will be found in the articles of mine: “Some Resources of Canada,” and “Recent Science,” in the Nineteenth Century, January, 1898, and October, 1897. I see from the Experimental Farms’ Reports for 1909 that on the average 38,000 samples of seeds are sent in this way to the farmers every year; in 1909 more than 38,000 farmers united in experiments as to the relative merits of the different sorts of wheat, oats, and barley under trial. I think that my friend, Dr. William Saunders, is quite right in saying that this system of supplying a great number of farmers with small quantities of choice seeds has contributed notably to increase the yield of corn in Canada.

70 L’Horticulture dans les cinq Parties du Monde. Paris ,1895.

71 [see Table 5]

72 [see Table 6]

73 Grandeau, Etudes agronomiques, 2e série. Paris, 1888.

74 Although 36 per cent. of the cultivable area is under cereals, there were in Denmark, in 1910, 2,253,980 head of cattle, as against 1,238,900 in 1871, and 1,470,100 in 1882.

75 Risler, Physiologie et Culture du Blé. Paris, 1886. Taking the whole of the wheat crop in France, we see that the following progress has been realised. In 1872–1881 the average crop was 16.5 bushels per acre. In 1882–1890 it attained 17.9 bushels per acre. Increase by 14 per cent. in ten years (Prof. C. V. Garola, Les Céréales, p. 70 seq.).

76 O. de Kerchove de Denterghen, La petite Culture des Flanders belges, Gand, 1878.

77 One could not insist too much on the collective character of the development of that branch of husbandry. In many places of the South coast of England early potatoes can also be grown — to say nothing of Cornwall and South Devon, where potatoes are obtained by separate labourers in small quantities as early as they are obtained in Jersey. But so long as this culture remains the work of isolated growers, its results must necessarily be inferior to those which the Jersey peasants obtain through their collective experience. For the technical details concerning potato-culture in Jersey, see a paper by a Jersey grower in the Journal of Horticulture, 22nd and 29th May, 1890. Considerable progress has been made lately in Cornwall, especially in the neighbourhood of Penzance, in the development of potato-growing and intensive market-gardening, and one may hope that the successes of these growers will incite others to imitate their example.

78 See Appendix L.

79 See the Annales agronomiques for 1892 and 1893; also Journal des Economistes, février, 1893, p. 215.

80 Barral in Journal d’Agriculture pratique, 2 février, 1889; Boitel, Herbages et Prairies naturelles, Paris, I887.

81 The increase of the crops due to irrigation is most instructive. In the most unproductive Sologne, irrigation has increased the hay crop from two tons per hectare (two and a half acres) to eight tons; in the Vendée, from four tons of bad hay to ten tons of excellent hay. In the Ain, M. Puris, having spent 19,000 francs for irrigating ninety-two and a half hectares (about £ 2 10s. per acre), obtained an increase of 207 tons of excellent hay. In the south of France, a net increase of over four bushels of wheat per acre is easily obtained by irrigation; while for market gardening the increase was found to attain £ 30 to £ 40 per acre. (See H. Sagnìer, “Irrigation,” in Barral’s Dictionnaire d’Agriculture, vol. iii., p. 339.) I hardly need mention the striking results obtained lately by irrigation in Egypt and on the dry plateaus of the United States.

82 Dictionnaire d’Agriculture, same article. See also Appendix M.

83 Ronna. Les Irrigations. vol. iii, p. 67. Paris, 1890.

84 Prof. Ronna gives the following figures of crops per acre: Twenty-eight tons of potatoes, sixteen tons of mangolds, 105 tons of beet, 110 tons of carrots, nine to twenty tons of various cabbage, and so on. — Most remarkable results seem also to have been obtained by M. Goppart, by growing green fodder for ensilage. See his work, Manuel de la Culture des Maïs et autres Fourrages verts, Paris, 1877.

85 “Shortly after the plant appears above ground it commences to throw out new and distinct stems, upon the first appearance of which a correspondent root-bud is developed for its support, and while the new stems grow out flat over the surface of the soil, their respective roots assume a corresponding development beneath it. This process, called ‘tillering,’ will continue until the season arrives for the stems to assume an upright growth.” The less the roots have been interfered with by overcrowding the better will be the ears (Major Hallett, “Thin Seeding,” etc.).

86 Paper on “ Thin Seeding and the Selection of Seed,” read before the Midland Farmers’ Club, 4th June, 1874.

87 “Pedigree Cereals,” 1889. Paper on “Thin Seeding,” etc., just mentioned. Abstracts from The Times, etc., 1862. Major Hallett contributed, moreover, several papers to the Journal of the Royal Agricultural Society, and one to The Nineteenth Century.

88 Agricultural Gazette, 3rd January, 1876. Ninety ears, some of which contained as many as 132 grains each, were also obtained in New Zealand.

89 It appears from many different experiments (mentioned in Prof. Garola’s excellent work, Les Céréales, Paris, 1892) that when tested seeds (of which no more than 6 per cent. are lost on sowing) are sown broadcast, to the amount of 500 seeds per square metre (a little more than one square yard), only 148 of them give plants. Each plant gives in such case from two to four stems and from two to four ears, but nearly 360 seeds are entirely lost. When sown in rows, the loss is not so great, but it is still considerable.

90 See Prof. Garola’s remarks on “Hallett’s Wheat,” which, by the way, seems to be well known to farmers in France and Germany (Les Céréales, p. 337).

91 Besides, Hallett’s wheat must not be sown later than the first week of September. Those who may try experiments with planted wheat must be especially careful to make the experiments in open fields, not in a back garden, and to sow early.

92 Upon this method of selecting seeds opinions are, however, at variance amongst agriculturists.

93 The straw was eighty-three and seventy-seven cwts. per acre in the first case; fifty-nine and forty-nine cwts. in the second case (Garola, Les Céréales). In his above-mentioned paper on “Thin Seeding,” Major Hallett mentions a crop at the rate of 108 bushels to the acre, obtained by planting nine inches apart.

94 L. Grandeau, Etudes agronomiques, 3e série, 1887–1888, p. 43. This series is still continued by one volume every year.

95 On one of these photographs one sees that in a soil improved by chemical manure only, seventeen stems from each grain are obtained; with organic manure added to the former, twenty-five stems were obtained.

96 Most interesting experiments for obtaining new sorts of wheat, combining the qualities of Canadian wheat with those of the best British sorts, are being carried on now at the Cambridge University. Similar experiments have been made in Germany by F. von Lochow, at Petkno, in order to produce new races of rye rich in gluten and prolific. These last experiments were made on Mr. Hallett’s method, and the results were satisfactory, as it appears from a report published in Fuehling’s Landwirthschaftliche Zeitung, Leipzig, January and February, 1900, pp. 29 and 54.

97 See Appendix N.

98 Charles Whitehead, Hints on Vegetable and Fruit Farming, London (J. Murray), 1890. The Gardener’s Chronicle, 20th April, 1895.

99 Charles Baltet, L’Horticulture dans les cinq Parties du Monde. Ouvrage couronné par la Société Nationale d’Horticulture. Paris (Hachette), 1895.

100 Charles Baltet, loc. cit.

101 Ardouin Dumazet, Voyage en France, vol. v., p. 10.

102 Ardouin Dumazet, Voyage en France, vol. v., p. 200.

103 Baudrillart, Les Populations agricoles de la France: Anjou, pp.70–71.

104 The total production of dessert fruit as well as dried or preserved fruit in France was estimated, in 1876, at 84,000 tons, and its value was taken at about 3,000,000,000 fr. (£ 120,000,000) — more than one-half of the war contribution levied by Germany. It must have largely increased since 1876.

105 Ardouin Dumazet, i., 204.

106 Ardouin Dumazet, vol. vii., pp. 124,125.

107 Auge-Laribe, L’evolution de la France agricole, Paris (Armand Colin), 12, p. 74. Professor Fontgalland estimates that the total exports of flowers, living plants, fruit and vegetables, both in season and out of season (primeurs), from the Alpes Maritimes, reach the enormous sum of £ 1,188,000, the gross income from an acre reaching as much as £ 200.

108 Charles Baltet, L’Horticulture, etc.

109 Charles Baltet, L’Horticulture, etc.

110 “Twenty-one oz.” and even fifteen oz.” glass is used in the cheaper greenhouses.

111 It is reckoned by measuring the height of the front and back walls and the length of the two slopes of the roof.

112 Rural England, i., p. 103.

113 Growing peas along the wall seems, however, to be a bad semester. It requires too rich work in attaching the plants to the wall. This system, however, excellent though it may be for a provisory start for gardeners who have not much capital to spend, is not profitable in the long run. The gardeners with whom I spoke in 1903, after having made some money with these light greenhouses, preferred to build more substantial ones, which could be heated from January to March or April.

114 I take these from notes which a Belgian professor of agriculture was kind enough to send me. The greenhouses in Belgian are mostly with iron frames

115 A friend, who has studied practical horticulture in the Channel Islands, writes me of the vineries about Brussels: “You have no idea to what extent it is done there. Bashford is nothing against it.”

116 A quotation which I took at random, in 1895, from a London daily, was: “Covent Garden, 19th March, 1895. Quotations: Belgian grapes, 4d. to 6d.; Jersey ditto, 6d. to 10d.; Muscats, ls. 6d. to 2s.; and tomatoes, Bd. to 5d. per lb.”

117 See Appendix S.

118 Out of them, 27,000 acres are grown in the fruit orchards, between the apple and cherry tree, so that the total area under fruit orchards and small fruit was reckoned at 308,000 acres in 1908.

119 “Fruit and Flower Farmin “ in Encyclopoeadia Britannica, 11th edition, article by J. Weathers.

120 Rural England, 2 vols., London (Longmans, Green), 1902, Vol. ii., p. 57.

121 F. E. Green, The Awakening of England, London (Nelson’s), 1911, pp. 49, 50. Speaking of a certain farmer, Mr. Green says: “In the autumn of 1910, when I visited him, he was offered £ 100 for an acre for his standing, crops, and £100 for the tenant rights. He refused the offer. His rent still stands at £2 an acre.”

122 According to the researches made by the French Ministry of Agriculture, the yearly produce of the French horticulturists attains the value of £ 16,000,000.

123 Rural England, ii., pp. 76, 212. Spalding, also in Lincolnshire, is another centre for the trade in spring flowers, as well as for intensive farming, co-operative small-holding having been introduced there by the Provident and Small-holdings Club (same work, ii., pp. 238–240). More than 1,000 acres are now given to the growing of flowers — an industry which was introduced only fifteen years ago, when it came from Holland. On p. 242 of the same work the reader will find some interesting information about a new “mutualist “ venture, the Lincoln Equitable Co-operative Society.

124 Rural England, ii., 59.

125 F.E. Green, The Awakening of England, pp. 116, 117.

126 The imports of fruit and vegetables, fresh and preserved, were £ 12,900,000 in 1909, and £ 14,193,000 in 1911, out of which fruit alone must have figured for at least £ 4,000,000. Potatoes alone, imported and retained for home consumption in the United Kingdom, figure in this item for the sums of from £ 6,908,550 in 1908 to 93,314,200 in 1910. The industry of dried fruit, and especially of dried vegetables, has not yet developed In this country, the result being that during the Boer War Britain paid a weekly tribute to Germany for dried vegetables, which attained many thousands of pounds every week. A nation cannot let its land be transformed into hunting reserves at the rate it is being done in this country without having to send the best and the most enterprising portion of its Population over-seas, and without relying for its daily food upon its neighbours and commercial rivals.

127 Thomas Smith, French Gardening, London (Utopia Press), 1909, 128 pp.; The Profitable Culture of Vegetable, for Market Gardeners, Small Holders, and Others, London (Longmans, Green), 1911, 452 pp., and a short summing up of the first of these works.

128 See Appendix T. bar

129 This is why the German economists find such difficulties in delimiting the proper domain of the domestic trades (Hausindustrie), and now identify this word with Verlagssystem, which means “working either directly or through the intermediary of a middleman employer (or buyer) for a dealer or employer, who pays the small producer for the goods he has produced, before they have reached the consumer.”

130 For more details about this subject, see an article of mine in the Nineteenth Century, August, 1900.

131 The Chief Inspector, Mr. Whitelegge, wrote to me in 1900 that the workshops which did not enter into his reports represented about one-half of all the workshops. Since that time Mr. Whitelegge has continued to publish his interesting reports adding to them new groups of workshops. However, they still remain incomplete to some extent as regards this last point. In the last Report, published in 1911, we see that 147,000 workshops were registered at the end of 1907, and returns were received from 105,000 of them. But as in 32,000 workshops no women or young persons (below 18) were employed, their returns were not published. The Report for 1907 gives, therefore, only 91,249 workshops in which 638,335 persons were employed (186,064 male and 282,324 female adults, 54,605 male and 113,728 female young persons — that is, full-timers from 14 to 18 years old — and 863 male and 751 female children under 14).

132 From the curve that I computed it appears that all the textile factories are distributed as to their size as follows: — Not less than 500 operatives, 200 factories, 203,100 operatives; from 499 to 200, 660 factories, 231,000 operatives; from 99 to 50, 1,380 factories, 103,500 operatives; less than 50, 1,410 factories, 42,300 operatives; total, 6,605 factories, 1,022,020 operatives. — Nineteenth Century, August,1900, p. 262.

133 Nearly one-half of the 43,000 operatives who were employed at that time in the woollen trade of this country were weaving in hand-looms. So also one-fifth of the 79,000 persons employed in the worsted trade.

134 E. Roscoe’s notes in the English Illustrated Magazine, May, 1884.

135 Bevan’s Guide to English Industries.

136 Thorold Rogers, The Economic Interpretation of History.

137 Poverty: a Study of Town Life, London (Macmillan), 1901.

138 [See Table 7]

139 Mutual Aid: a Factor of Evolution. London (Heinemann), 1902.

140 See Baudrillart’s Les Populations agricoles de la France: Normandie.

141 Le Coton: son regime, ses problemes. Paris, 1863, p. 170.

142 Les Populations agricoles de, la France: Normandie.

143 Voyage en France. Paris, 1893–1910 (Berget-Levreau, publishers), 56 volumes already published.

144 Ardouin Dumazet, vol. xvii., p. 242.

145 Ibid., vol. xvii., pp. 100, 101.

146 Ardouin Dumazet, Vol. xix., P. 10.

147 Ardouin Dumazet, vol. ii., p. 167.

148 In Maine-et-Loire, la Vendee, Loire Inferieure, and Deux-Sevres. The same revival takes place in Ireland, where the weaving of handkerchiefs in hand-looms is growing in the shape of a small village industry.

149 Ardouin Dumazet, vol. i., p. 117 et seq.

150 Twelve thousand in 1906.

151 Ardouin Dumazet, vol. v., p. 270.

152 Ibid., vol. v., p. 215.

153 Ardouin Dumazet, vol. v., pp. 259–266.

154 I gave some information about French prison work in a book, In Russian and French Prisons, London, 1888.

155 Ardouin Dumazet, Vol. ii., p. 51.

156 Ibid., Vol. i., pp. 305, 306.

157 Ardouin Dumazet, vol. i., p. 52.

158 Prof. Issaieff in the Russian Memoirs of the Petty Trades Commission (Trudy Kustarnoi Kommissii), vol. v.

159 Knives are sold at from 6s. 4d. to 8s. per gross, and razors at 3s. 3d. per gross “for export.”

160 Ardouin Dumazet, vol. i., p. 213 et seg.

161 Ardouin Dumazet, vol. viii., p. 40.

162 Interesting details about the small industries of this region will be found in the articles of Ch. Guicysse, in Pages libres, 1902, Nos. 66 and 71.

163 Ardouin Dumazet, vol. xxiii., pp. 105, 106.

164 For further details see Appendix U.

165 Ardouin Dumazet, vol. viii., p. 266.

166 Some further details about the Lyons region and St. Etienne are given in Appendix U.

167 In 1873, out of a total population of 1,851,800 inhabiting Paris, 816,040 (404,408 men and 411,632 women) were living on industry, and out of them only 293,691 were connected with the factories (grande industrie), while 522,349 were living on the petty trades (petite indu8trie) — Maxime du Camp, Paris et ses Organes, vol. vi. It is interesting to note that of late the small workshops where some of the finest work is made in metals, wood, and so on, have begun to be scattered round Paris.

168 Everyone knows what an immense progress has been realised since by the motors used in motor cars and aeroplanes, and what is achieved now by the transmission of electrical power. But I leave these lines as they were written, as a testimony of the way in which the conquest of air began, and of the part taken in it by the French small industry.

169 The remarks of Prof. Issaieff — a thorough investigator of petty trades in Russia, Germany and France — (see Works of the Commission for the Study of Petty Trades in Russia (Russian), St. Petersburg, 1879–1887 vol. i.) were for me a valuable guide when I prepared the first edition of this book. Since that time the two industrial censuses of 1895 and 1907 have yielded such a valuable material, that there are quite a number of German works which came to the same conclusions. I shall mention them further on.

170 See K. Buecher’s Preface to the Untersuchungen über die Lage des Handwerks in Deutschland, vol. iv.

171 The foundation for this creed is contained in one of the concluding chapters of Marx’s Kapitall (the last but one), in which the author spoke of the concentration of capital and saw in it the “fatality of a natural law.” In the “forties,” this idea of “concentration of capital,” originated from what was going on in the textile industries, was continually recurring in the writings of all the French socialists, especially Considérant, and their German followers, and it was used by them as an argument in favour of the necessity of a social revolution. But Marx was too much of a thinker that he should not have taken notice of the subsequent developments of industrial life, which were not foreseen in 1848; if he had lived now, he surely would not have shut his eyes to the formidable growth of the numbers of small capitalists and to the middle-class fortunes which are made in a thousand ways under the shadow of the modern “millionaires.” Very likely he would have noticed also the extreme slowness with which the wrecking of small industries goes on — a slowness which could not be predicted fifty or forty years ago, because no one could foresee at that time the facilities which have been offered since for transport, the growing variety of demand, nor the cheap means which are now in use for the supply of motive power in small quantities. Being a thinker, lie would have studied these facts, and very probably he would have mitigated the absoluteness of his earlier formulae, as in fact he did once with regard to the village community in Russia. It would be most desirable that his followers should rely less upon abstract formulae — easy as they may be as watchwords in political struggles — and try to imitate their teacher in his analysis of concrete economical phenomena.

172 The Economic Interpretation of History.

173 Les Progrès de la Science économique depuis Adam Smith, Paris, 1890, t. i., pp. 460,461.

174 See the discussions in the Reichstag in January, 1909, on the Polish Syndicates, and the application that is made to them of the paragraph of the law of the associations relative to language (Spraakenzaragraph).

175 See Appendix X.

176 See Appendix V.

177 Here is the distribution of workpeople in all the industries, according to the Annuaire, Statistique for the year 1909: Artisans working single-handed or with the aid of their families, 165,000 establishments; very small industry, from one to four workpeople, 54,000 establishments, 95,000 workpeople; small industry, from five to forty-nine workpeople per factory, 14,800 establishments, 177,000 employees; middle-sized and great industry, from 50 to 499 workpeople per factory, 1,500 establishments, 250,000 employees; very great industry, above 500 workpeople per factory, 200 establishments, 160,000 employees. Total, 230,000 employers great and small; or 7 1,000 employers out of 7,000,000 inhabitants if we do not count the independent artisans.

178 When shall — we have for the United Kingdom a census as complete as we have it for France, Germany, and Belgium? that is, a census in which the employed and the employers will be counted separately — instead of throwing into one heap the owner of the factory, the managers, the engineers, and the workers — and their distribution in factories of different sizes will be given.

179 Pewile Industries: Artisans working single or with the aid of their families, 1,437; from one to four workmen, 430 establishments, 949 work-people; from five to forty-nine workpeople, 774 establishments, 14,051 workers; above fifty, 379 establishments, 66,103 workers.

180 Since 1907 the Russian Government has inaugurated this policy, and has begun to destroy by violence the village community in the interest of the landlord and the protected industries.

181 It appears from the house-to-house inquiry, which embodies 855,000 workers, that the yearly value of the produce which they use to manufacture reaches £21,087,000 (the rouble at 24d.), that is, an average of £25 per worker. An average of E20 for the 7,500,000 persons engaged in domestic industries would already give £150,000,000 for their aggregate production; but the most authoritative investigators consider that figure as below the reality.

182 Some of the produces of the Russian rural industries have lately been introduced in this country, and find a good sale.

183 Prugavin, in the Vyestnik Promyshlenvosti, June, 1884. S. also the excellent work of V. V. (Vorontsoff) Destinies of Capitalism in Russia, 1882 (Russia).

184 I may add from my own experience that such is also the opinion of several Manchester employers: “I am saving a great deal by using municipal electric power in my factory, instead of the steam-engine.” I was told by one of the most respected members of the Manchester community: “I pay for motive power according to the number of persons I employ — two hundred at certain times, and fifty in other parts of the year. I need not buy coal and stock it in advance for all the year; I have saved the room that was occupied by the steam. engine; and the room above it is not heated and shaken by the engine as it used to be.”

185 In their examination of the causes of unemployment in York, based not on economists’ hypotheses, but on a close study of the real facts in each individual case (Unemployment: a Social Study, London, 1911), Seebohm Rowntree and Mr. Bruno Lasker have come to the conclusion that the chief cause of unemployment is that young people, after having left the school (where they learn no trade), find employment in such professions as greengrocer boy, newspaper boy, and the like, which represent “a blind alley.” When they reach the age of eighteen or twenty, they must leave, because the wages are a boy’s wages, — and they know no trade whatever!

186 Unfortunately, I must already say “admitted” instead of “admits.” With the reaction which began after 1881, under the reign of Alexander Ill., this school was “reformed”; that means that all the spirit and the system of the school were destroyed.

187 Manual Training: the Solution of Social and Industrial Problems. By Ch. H. Ham. London: Blackie & Son, 1886. I can add that like results were achieved also at the Krasnoufimsk Realschule, in the province of Orenburg, especially with regard to agriculture and agricultural machinery. The achievements of the school, however, are so interesting that they deserve more than a short mention.

188 It is evident that the Gordon’s College industrial department is not a mere copy of any foreign school; on the contrary, I cannot help thinking that if Aberdeen has made that excellent move towards combining science with handicraft, the move was a natural outcome of what has been practised long since, on a smaller scale, in the Aberdeen daily schools.

189 What this school is now, I don’t know. In the first years of Alexander III’s reign it was wrecked, like so many other good institutions of the early part of the reign of Alexander II. But the system was not lost. It was carried over to America.

190 To those readers who are really interested in the education of children, M. Leray, the French translator of this book, recommended a series of excellent little works “conceived,” he wrote, “in the very spirit of the ideas developed in this chapter. Their leading principle is that ‘in order to be soundly educative, all teaching must be objective, especially at the outset.’ and that ‘systematical abstraction, if it be introduced into the teaching without an objective (concrete) preparation, is noxious.’” M. Leray meant the series of initiations published by the French publishers, Hachette: Initiation mathématique, by C. A. Laisant, a book completed by the Initiateur mathématique, which is a game with small cubes, very ingenious and giving in a concrete form the proofs of arithmetics, the metric system, algebra and geometry; Initiation astronomique, by C. Flammarion; Initiation chimique, by Georges Darzens; Initiation à la mécanique, by Ch. Ed. Guillaume; and Initiation zoologique, by E. Brucker. The authors of these works had — it would not be just not to mention it — predecessors in Jean Mace’s L’ Arithmétique du grand-papa, and René Leblanc, I, whose excellent manual, Les Sciences physiques à l’Ecole primaire” — M. Leray says that from his own experience upon pupils from eleven to thirteen years old — “gives even to the dullest children the taste or even the passion for physical experiment.”

191 Take, for instance, the description of Atwood’s machine in any course of elementary physics. You will find very great attention paid to the wheels on which the axle of the pulley is made to lie; hollow boxes, plates and rings, the clock, and other accessories will be mentioned before one word is said upon the leading idea of the machine, which is to slacken the motion of a falling body by making a falling body of small weight move a heavier body which is in the state of inertia, gravity acting on it in two opposite directions. That was the inventor’s idea; and if it is made clear, the pupils see at once that to suspend two bodies of equal weight over a pulley, and to make them move by adding a small weight to one of them, is one of the means (and a good one) for slackening the motion during the falling; they see that the friction of the pulley must be reduced to a minimum, either by using the two pairs of wheels, which so much puzzle the text-book makers, or by any other means; that the, clock is a luxury, and the “plates and rings” are mere accessories: in short, that Atwood’s idea can be realised with the wheel of a clock fastened, as a pulley, to a wall, or on the top of a broomstick secured in a vertical position. In this case the pupils will understand the idea of the machine and of its inventor, and they will accustom themselves to separate the leading idea from the accessories; while in the other case they merely look with curiosity at the tricks performed by the teacher with a complicated machine, and the few who finally understand it spend a quantity of time in the effort. In reality, all apparatus used to illustrate the fundamental laws of physics ought to be made by the children themselves.

192 The sale of the pupils’ work was not insignificant, especially when they reached the higher classes, and made steam-engines. Therefore the Moscow school, when I knew it, was one of the cheapest in the world. It gave boarding and education at a very low fee. But imagine such a school connected with a farm school, which grows food and exchanges it at its cost price. What will be the cost of education then?

193 In an otherwise, also remarkable memoir on the Arctic Regions.

194 The rate of progress in the recently so popular Glacial Period question was strikingly slow. Already Venetz in 1821 and Esmarck in 1823 had explained the erratic phenomena by the glaciation of Europe. Agassiz came forth with the glaciation of the Alps, the, Jura mountains, and Scotland, about 1840; and five years later, Guyot had published his maps of the routes followed by Alpine boulders. But forty-two years elapsed after Venetz wrote before one geologist of mark (Lyell) dared timidly to accept his theory, even to a limited extent — the most interesting fact being that Guyot’s maps, considered as irrelevant in 1845, were recognised as conclusive after 1863. Even now — more than half a century after Agassiz’s first work — Agassiz’s views are not yet either refuted or generally accepted. So also Forbes’s views upon the plasticity of ice. Let me add, by the way, that the whole polemics as to the viscosity of ice is a striking instance of how facts, scientific terms, and experimental methods quite familiar to building engineers, were ignored by those who took part in the polemics. If these, facts, terms and methods were taken into account, the polemics would not have rated for years with no result. Like instances, to show how science suffers from a want of acquaintance with facts and methods of experimenting both well known to engineers, florists, cattle-breeders, and so on, could be produced in numbers.

195 Chemistry is, to a great extent, an exception to the rule. Is it not because the chemist is to such an extent a manual worker? Besides, during the last ten years we see a decided revival in scientific inventiveness, especially in physics — that is, in a branch in which the engineer and the man of science meet so much together.

196 I leave on purpose these lines as they were in the first edition. All these desiderata are already accomplished facts.

197 The same remark ought to be made as regards the sociologists, and still more so the economists. What are most of them, including the socialists, doing, but studying chiefly the books previously written and the systems, instead of studying the facts of the economical life of the nations, and the thousands of attempts at giving to agriculture and industry new forms of organisation and new methods which are now made everywhere in Europe and America?

198 These figures may be computed, for instance, from the data contained in “The Ninth Annual Report of the Commissioner of Labour of the United States, for the year 1893: Building and Loan Associations.” In this country the cost of a workman’s cottage is reckoned at about £200, which would represent 700 to 800 days of labour. But we must not forget how much of this sum is a toll raised by the capitalists and the landlords upon everything that is used in building the cottage: the bricks and tiles, the mortar, the wood, the iron, etc.

199 “Great Britain’s Capital Investments in Other Lands” (Journal of the Statistical Society, September 1909, vol. lxxii., pp. 475–495), followed by a most interesting discussion; and “ Great Britain’s Capital Investments in India, Colonial and Foreign Countries,” same journal, January 1911, vol. lxxiv., pp.167–200.

200 T.M. Young, The American Cotton Industry. Introduction by Elijah Helm, Secretary to the Manchester Chamber of Commerce, London 1902; and T.W. Uttley, Cotton Spinning and Manufacturing in the United States: A report ... of a tour of the American cotton manufacturing centres made in 1903 and 1904. Publications of Manchester University, Economic Series, No. II., Manchester, 1905.

201 Ten Years of Sunshine in the British Isles, 1881–1890

202 Dr. M. Fesca, Beitrage zur Kenntniss der Japanesischen Landwirthschaft, Part ii., p. 33 (Berlin, 1893). The economy in seeds is also considerable. While in Italy 250 kilogrammes to the hectare are sown, and 160 kilogrammes in South Carolina, the Japanese use only sixty kilogrammes for the same area, (Semler, Tropische Agrikultur, Bd. Iii., pp. 20–28.)

203 Eugene Simon, La cite chinoise (translated into English); Toubeau, La repartition metrique des impots, 2 vols., Paris (Guillaumin), 1880.

204 The Gardener’s Chronicle, 20th April, 1895, p. 483. The same, I learn from a German grower near Berlin, takes place in Germany.

205 I am indebted for the following information to M.V. Euvert, President of the Chamber of Commerce of St. Etienne, who sent me, while I was in the Clairvaux prison, in April, 1885, a most valuable sketch of the various industries of the region, in reply to a letter of mine, and I avail myself of the opportunity for expressing to M. Euvert my best thanks for his courtesy. This information has now an historical value only. But it is such an interesting page of the history of the small industries that I retain it as it was in the first edition, the more so as it is most interesting to compare it with the pages given in the text to the present conditions of the same industries.

206 It had been 5,134,000 kilogrammes in 1872. Journal de la Société de Statistique de Paris, September, 1883.

207 I take these figures from a detailed letter which the President of the Lyons Chamber of Commerce kindly directed to me in April, 1885, to Clairvaux, in answer to my inquiries about the subject. I avail myself of this opportunity for addressing to him my best thanks for his most interesting communication.

208 La fabrique lyonnaise de soieries. Son passé, son prêsent. Imprimé par ordre de la Chambre de Commerce de Lyon, 1873. (Published in connection with the Vienna Exhibition.)

209 Marius Morand, L’organisation ouvrière de la fabrique lyonnaise; paper read before the Association Française pour l’avencement des Sciences, in 1873.

210 Journal de la Societe de Statistique de Paris, June 1901, pp. 189–192, and “Resultats Generaux,” in vol. iv. Of the above-mentioned publication.

211 Here is how they are distributed: Workmen working single-handed, 124,544; with their families, but without paid workmen, 8,000; less than 10 workmen, 34,433 factories; from 10 to 100 workpeople, 4,665 factories; from 101 to 200 workpeople, 746 factories; from 201 to 500 workpeople, 554; from 501 to 1,000, 123; from 1,001 to 2,000, 38; more than 2,000, 2 factories.

212 In an excellent monograph dealing with this branch (Le developpement de la fabrique et la travail a domicile dans les industries de l’habillement, by Professor Albert Aftalion, Paris, 1906), the author gives most valuable data as to the proper domains of domestic work and the factory, and shows how, why, and in which domains domestic work successfully competes with the factory.

213 The industrial establishments having more than 1,000 employees each are distributed as follows: Mining, 41; textiles, 40 (123 have from 500 to 1,000); industries of the State and the Communes, 14; metallurgy, 17; working of metals — iron, steel, brass — 17, quarries, 2; alimentation, 3; chemical industries, 2; india-rubber, paper, cardboard, 0 (9 have from 500 to 1,000); books, polygraphy, 0 (22 have from 500 to 1,000); dressing of stuffs, clothing, 2 (9 from 500 to 1000); straw, feathers, hair, 0 (1 from 500 to 1,000); leather, skins, 2; wood, cabinet-making, brushes, etc., 1; fine metals, jewelry, 0; cutting of precious stones, 0; stone-cutting for buildings, 0; earth-works and building, 1; bricks, ceramics, 7; preparation and distribution of food, 0; total, 149 out of 575,531 establishments. To these figures we may add six large establishments in the transports, and five in different branches of trade. We ma note also that, by means of various calculations, M. March comes to the conclusion that 91 per cent. of the workmen and employees in industry and 44 per cent. in commerce are employees — that is, clerks, managers, and so on.

214 Die Hausindustrie in der Schweiz: Auszug aus der Ergebnissen der Eidgenossischen Betreibszahlung von Aug. 9, 1905; E. Ryser, L’industrie horlogere, Zurich, 1909; J. Beck, Die Schweizerische Hausindustrie, ihre soziale und wirthschaftliche Lage, Grutliverein, 1909.